
DIMS Dashboard Documentation
Release 1.0.10

Linda Parsons

Aug 16, 2017

Contents

1 Using the Dashboard 3
1.1 Mitigation Scenario . 3
1.2 System health . 7
1.3 Live log streaming . 7
1.4 Chat . 12
1.5 User display and trust groups . 12

2 Tickets 17
2.1 General ticket structure . 17
2.2 Topics . 17

3 Ticket API 19
3.1 HTTP Verbs . 20
3.2 Responses . 20
3.3 Retrieve a list of tickets . 21

3.3.1 No parameters . 21
3.3.2 With query parameters . 22

3.4 Creating an activity . 23

4 Contact 29

5 License 31

i

ii

DIMS Dashboard Documentation, Release 1.0.10

Contents:

Contents 1

DIMS Dashboard Documentation, Release 1.0.10

2 Contents

CHAPTER 1

Using the Dashboard

This section will introduce basic usage of the DIMS Dashboard.

Currently this section contains a demo runthrough with commentary. The following sub-sections will go through the:

1. Mitigation Scenario

2. System health

3. Live log streaming

4. Chat

5. User display and trust group info - show users by trust group

The demo application is not currently using https, so you won’t need to worry about certificates when logging in.
Make sure you are logged out of the dashboard (if you are already logged in) and reload the login page if you are
already on that page (to make sure your client has the latest version).

Mitigation Scenario

Go to demo.prisem.washington.edu and log in using your ops-trust username and password.

The main dashboard will display.

Remediations
are
mit-
i-
ga-
tion
ac-
tiv-
i-
ties

3

DIMS Dashboard Documentation, Release 1.0.10

in
the
sys-
tem
where
the
logged
in
user
(lpar-
sons
in
the
screen-

shots) has IPs that are compromised and need to be remediated. Currently the system contains one of these “Mitigation
scenario” activities which was bootstrapped programmatically.

Hover over the graph to display data points. Note the number of mitigated IPs at the most recent data point (the
dates may differ than that in the screenshot):

Click View my IPs needing mitigation link to display a modal window where you can submit IPs that have been
mitigated. Right now the UI for this consists of the modal displaying all remaining IPs you need to address.

This mitigation activity has IPs that need to be remediated for the users dittrich, lparsons, mboggess, and swarner. So
your IPs will look different than those in this figure.

Check off some IPs indicating that they have been mitigated and click Submit.

The modal window will close and the graph will be updated. Hover over the last data point to verify. For this user, the
total IPs mitigated is now 39.

Note: Currently, to start a new mitigation activity, a user will do so via the Dashboard (UI not available yet), using a

4 Chapter 1. Using the Dashboard

DIMS Dashboard Documentation, Release 1.0.10

1.1. Mitigation Scenario 5

DIMS Dashboard Documentation, Release 1.0.10

6 Chapter 1. Using the Dashboard

DIMS Dashboard Documentation, Release 1.0.10

form to submit the suspect IPs that the user probably received on a Trident email list. The system then automatically
parses the list and bins the IPs according to attributes belonging to users, creating a new activity that will appear in
the Remediations list for those users that are affected. There will also be some sort of notification. (In the future this
creation would be automated by a service that can process emails that come into the system.)

The Watching section lists Activities that the user has subscribed to, either by subscribing to a public activity created
by someone else or by creating a new activity.

Activities are collections of data, queries, etc. They can be public or private. If a user subscribes to a public activity,
the user receives a notification when new data is added to the activity. This is a first cut at the UI, and most of the
UI display/functions (creating, sharing, subscribing) are currently in progress and not online (server side API and
associated modules exist). The only thing you can see right now in the UI is the list of activities.

System health

The status area on the left is mostly static at present. However, a link to open the consul UI in a new tab exists.

Click Open Consul view:

and the Consul UI will open in a new tab with the NODES tab selected.

(You can demonstrate the Consul UI at this point if desired.)

Live log streaming

The live log monitoring is now a popup panel so as to persist data across page views. That means the buffers won’t be
cleared if you go to a different section on the site (e.g. new page load).

1. Click Logging in the Navigation bar and select Live log streaming.

The Live log streaming window anchored to the bottom of the browser window will display.

There are tabs for the log exchanges the server monitors. Each tab has a button to turn on/ turn off that particular
log monitor. The user can clear the buffer using the “Clear” button. The user can hide the window by clicking

1.2. System health 7

DIMS Dashboard Documentation, Release 1.0.10

the minimize button (down arrow in title bar), and then maximize it by clicking the maximize button (up arrow).
Clicking the close button (X) turns off all monitors and closes the window. The window can also be closed by
clicking Logging > Live log streaming in the Nav bar. (This is a toggle - if the window is active, clicking it
closes the window. If the window is closed, clicking the button opens the window.)

The Live log streaming window, like the Chat window, is independent of other page views. So it will remain
active even if you go to a different view via a menu or navigation button.

2. Click on Devops tab and click button Turn on Devops

3. Do the same for Health - click on Health tab and click button Turn on Health

4. You could start an activity that reports to devops via another program, or wait a couple minutes and you’ll
probably get info on Health:

5. Click the minimize button:

and the logs will minimize to the bottom of the window.

6. Then click maximize to open it again.

The messages will still be there (maybe more).

You can go to different locations in the app without clearing the log buffers. So go to Users > Find DIMS users
to display users in your current trust group. The users will display behind the streaming window. Minimize the
streaming log display to view the users:

7. You can clear the log buffers individually by clicking Clear in a log tab. To clear all the buffers and close the
display, click the Log Monitor link in the nav bar or just click the X in the monitor window title bar.

8 Chapter 1. Using the Dashboard

DIMS Dashboard Documentation, Release 1.0.10

1.3. Live log streaming 9

DIMS Dashboard Documentation, Release 1.0.10

10 Chapter 1. Using the Dashboard

DIMS Dashboard Documentation, Release 1.0.10

1.3. Live log streaming 11

DIMS Dashboard Documentation, Release 1.0.10

Chat

1. Click the chat icon in the Nav bar to open the chat window:

Unless you’re chatting with someone else who is logged in, there isn’t much to see (you can send messages to
yourself however). Enter a message in the message area of the chat box and press Enter key.

The message you sent will appear in your chat window:

User display and trust groups

1. Note that the name of the trust group you are logged into displays on the menu bar:

The system remembers your last selection. If you have never selected a trust group, it will choose the first one
in your list of trust groups when you first log in.

2. Display your profile information by selecting dittrich > Profile in the nav bar. Note that the trust group
info now displays in the profile.

3. Change your trust group by clicking on the current trust group in the nav bar and selecting an option that displays
in the menu. (If you are only in one trust group then no options will display.)

4. Note that the trust group listed in your profile will change to the current trust group:

12 Chapter 1. Using the Dashboard

DIMS Dashboard Documentation, Release 1.0.10

1.5. User display and trust groups 13

DIMS Dashboard Documentation, Release 1.0.10

14 Chapter 1. Using the Dashboard

DIMS Dashboard Documentation, Release 1.0.10

5. To see the users in your currently selected trust group, select Users > Find DIMS Users on the nav bar.
The list of users in the current trust group will display.

6. Again, change the trust group via the trust group menu in the nav bar. The list of users will change to reflect the
users in the new current trust group.

1.5. User display and trust groups 15

DIMS Dashboard Documentation, Release 1.0.10

16 Chapter 1. Using the Dashboard

CHAPTER 2

Tickets

There are currently two types of tickets:

• Activity

• Mitigation

Activities are ad hoc ways for users to save information. An activity can have any number of topics associated with it,
and users can create topics and add them to an activity.

Mitigation tickets are more structured in that a user can create one by making the appropriate api call and supplying
a list of IPs, but the system automatically creates all associated topics, which have specific purposes in a mitigation
activity.

General ticket structure

A ticket is described

• A Redis key/value pair where the value is a 1-level hash

• Zero or more associated “topi”

Topics

A topic is always associated with a parent ticket. The parent key can be derived from the topic key.

When a topic is added to a ticket, its key is added to the set of topic keys owned by the ticket (parent).

Topics are stored in redis as follows:

Table 2.1: Topic storage

Data Key Value
Metadata Topic metadata key (hash) JSON metadata

17

DIMS Dashboard Documentation, Release 1.0.10

We currently restrict the metadata saved for a topic. We do not allow user-defined metadata. Should we change this
behavior?

Metadata provided by calling method

{
datatype: (required) 'set' or 'string'
name: (required) name of topic
description: (optional) description of topic (default - '')

}

{
createdTime: Unix epoch time when topic is created
modifiedTime: Unix epoch time when topic modified
num: Topic counter: (via topicCounterKey) - used to ensure uniqueness

}

18 Chapter 2. Tickets

CHAPTER 3

Ticket API

The dashboard server provides a REST API for working with tickets.

Note: One API design decision was how open to make the API - that is, would the API automatically restrict data
sent back for certain requests. For example, we have the concept of public and private tickets. When a GET request
is made, do we want the API to return all tickets or a subset such as all public and all private belonging to the current
user?

The API is currently restrictive - a GET request to /api/tickets would return all public activity tickets and all private
tickets owned by the calling user.

The API is intended to require authentication. The plan is that the client would have obtained the token for the calling
user and included it with the API call. The server will then look up the attributes for the user referenced by the token.
These would be:

• username - user name (in Ops-trust) of the calling user

• trustgroup - trust group the user is logged into

• admin - is the user an admin in the trust group

This has not been implemented yet as we need to determine how to integrate this with Trident and their login tokens,
as well as have a Trident instance running.

In the interim, the server currently authenticates users with the Dashboard via their Ops-trust (Trident) usernames
and passwords and establishes a persistent login session for the user. This can be used to protect the API endpoints
when accessing via the Dashboard client, but would prevent other clients from accessing. So the API is not protected
by the current authentication mechanism in order to allow other clients access until we get the token authentication
implemented.

Until token authentication is implemented however, requests from clients other than the Dashboard will not be able to
retrieve user private tickets.

19

DIMS Dashboard Documentation, Release 1.0.10

HTTP Verbs

GET /api/ticket list
POST /api/ticket create
GET /api/ticket/:id show
PUT /api/ticket/:id update
DELETE /api/ticket/:id delete

Responses

The API returns JSON. JSON responses follow the unofficial JSEND spec. See http://labs.omniti.com/labs/jsend/wiki
for more information.

Successful requests will return JSON with a status of success and a data property with the JSON result.

{
"data": <json>
"status": "success"

}

The data property will generally be in the following form for one ticket:

"data": {
"ticket": {
<json describing ticket>

}
}

or for multiple tickets:

"data": {
"tickets": [<array of json where each one describes a ticket>]

}

Since mitigations are a special form of ticket, we use the terms mitigation and mitigations as keys to their
response:

"data": {
"mitigation": {
<json describing mitigation ticket>

}
}

Requests that do not send back data (such as delete) will return with data set to null:

{
"status": "success",
"data": null

}

Unsuccessful requests will return JSON with an error message and a status of error:

{
"message": "You do not have permission to access this ticket",

20 Chapter 3. Ticket API

http://labs.omniti.com/labs/jsend/wiki

DIMS Dashboard Documentation, Release 1.0.10

"status": "error"
}

Requests that failed due to invalid data or parameters submitted may generate a fail response:

{
"status": "fail",
"data": <wrapper for reason request failed>

}

For example:

{
"status": "fail",
"data": {
"name": "A name for the new ticket is required"

}
}

Note: Currently most errors are reported as error rather than fail. We are working on refactoring so that errors
that should be reported as fail are done so.

An HTTP status code is included in the response headers. For example, the following request returns with 400:

$ curl -k -I http://192.168.56.103/api/ticket
HTTP/1.1 400 Bad Request
Server: nginx/1.8.0
Date: Wed, 13 Jan 2016 16:44:48 GMT
Content-Type: text/plain; charset=utf-8
Content-Length: 96
Connection: keep-alive
X-Powered-By: Express
ETag: W/"60-kIP4LSNmFtWUQFvEw0Zo/g"
set-cookie: connect.sid=s%3Ah6h88KJrXfxT4Ycabe1dk5aTFY26SRx8.
→˓o7d2T9y03YrbbR8ssnmF0tFEpfV9VNI6F7l9oJQEgAg; Path=/; HttpOnly

Retrieve a list of tickets

Returns list of tickets

No parameters

When no parameters are provided, the system defaults to the following parameters:

type: 'activity',

This will return all public activities plus any private activities belonging to the calling user.

Invoked via GET http://dashboard_url/api/ticket/ Returns HTTP status code and string reply

Using curl: curl -k https://dashboard_url/api/ticket/

Sample response:

3.3. Retrieve a list of tickets 21

http://dashboard_url/api/ticket/
https://dashboard_url/api/ticket/

DIMS Dashboard Documentation, Release 1.0.10

{ "data": [
"ticket:1",
"ticket:2",
"ticket:3"]

}

With query parameters

private: boolean
type: string
ownedBy: string
open: boolean

type can be mitigation or activity. For mitigation tickets, no other parameters are needed, and any extra
provided are ignored.

$ curl -k http://192.168.56.103/api/ticket?type=mitigation | python -m json.tool
% Total % Received % Xferd Average Speed Time Time Time Current

Dload Upload Total Spent Left Speed
100 1177 100 1177 0 0 34609 0 --:--:-- --:--:-- --:--:-- 35666
{

"data": [
{

"data": [
[

1450004398760,
0

],
[

1450068277926,
6

],
[

1450085780836,
13

],
[

1452404888722,
329

],
[

1452478109289,
343

]
],
"ips": {

"data": [],
"user": null

},
"key": "dims:ticket:mitigation:1",
"metadata": {

"createdTime": 1452682798841,
"creator": "lparsons",
"description": "IPs needing mitigation. As you mitigate IPs, submit

→˓them here.",
"initialNum": 1408,

22 Chapter 3. Ticket API

DIMS Dashboard Documentation, Release 1.0.10

"mitigatedNum": 343,
"modifiedTime": 1452682798841,
"name": "Action Needed: 12/12/2015 Compromised IPs",
"num": 1,
"open": true,
"private": false,
"type": "mitigation",
"unknownNum": 864

}
}

],
"status": "success"

}

Creating an activity

/**
Returns a ticket: ticket key, ticket metadata, list of associated topic keys
@return HTTP Status code and string reply.

@example
Example response:

{"data": {
"ticket":
{"num":"1",
"creator":"testuser",
"type":"data",
"createdTime":"1418060768120",
"open":"true"},

"key":"ticket:1",
"topics":["ticket:1:data:cif:results:result1.txt",

"ticket:1:data:cif:results:result2.txt"]
}

}
@example How to invoke
GET https://dashboard_url/api/ticket/ticket:1

Using curl:
curl -k https://dashboard_url/api/ticket/ticket:1

@param {string} id Ticket key in format ticket:<num>
/

/**
Creates a new ticket
@method create
@return HTTP Status code and string reply.

{"data": {
"ticket":
{"num":"2",
"creator":"testuser",
"type":"data",
"createdTime":"1418060768120",
"open":"true"},

"key":"ticket:2"

3.4. Creating an activity 23

DIMS Dashboard Documentation, Release 1.0.10

}
}

@example

POST https://dashboard_url/api/ticket/
body:
{

"type": "data",
"creator": "testuser"

}

Using curl:
curl --data "type=data&creator=testuser" -k https://dashboard_url/api/ticket

@param {string} type Type of ticket being created
@param {string} creator Username of user creating ticket (optional if user logged in,

ignored if user logged in)
/

/**
Adds a topic (metadata) to a ticket and saves the data (content)
@method addTopic
@return HTTP Status code and string reply.
@example
Sample json response:

{"data":{
"topic":{

"parent":{
"num":"12","creator":"testUser","type":"analysis","createdTime":

→˓"1418131797522","open":"true"
},
"type":"analysis",
"name":"namesearch:result2",
"dataType":"hash"
},
"content":{"firstname":"bob","lastname":"johnson"},
"key":"ticket:12:analysis:namesearch:result2"

}
}

@example
Example URI

POST https://dashboard_url/api/ticket/ticket:27/topic
body:
{

"name": "cif:results:1418060768120",
"dataType": "string",
"content": <string content>

}
Note that content in this example could be JSON that is stringified. Content could
→˓also be content of a
file, base64'd, as in

POST https://dashboard_URL/api/ticket/ticket:28/topic
body:
{

"name": "mal4s:result:resul1.png",
"dataType": "string",

24 Chapter 3. Ticket API

DIMS Dashboard Documentation, Release 1.0.10

"content": <base64 content of a .png file>
}

Using curl with hash content (content is uri encoded):
curl --data "name=namesearch:results&dataType=hash&content=%7B%22firstname%22:

→˓%22bob%22,%22lastname%22:%22johnson%22%7D" -k https://dashboard_url/api/ticket/
→˓ticket:12/topic

A successful response from the curl command might look like the following (line
→˓feeds added for clarity - reponse is just a string):

{"data":{
"topic":{
"parent":{"num":"12","creator":"testUser","type":"analysis","createdTime":

→˓"1418131797522","open":"true"},
"type":"analysis","name":"namesearch:result2","dataType":"hash"},
"content":{"firstname":"bob","lastname":"johnson"},"key":

→˓"ticket:12:analysis:namesearch:result2"}}

@param {string} id Ticket key in format ticket:<num>
@param {string} name Name of the topic - this represents the last part of the topic
→˓key after

ticket:<num>:<ticket_type>:
@param {string} dataType Redis data structure to store the contents in - can be
→˓string or hash
@param {string} content Content to be stored

Note that content is optional if type is string. If no content is specified, then an
→˓empty string
is stored at the topic key. You would use this if you want to use the contents of a
→˓file as the
data to be stored. First create the topic with a type of string and no content. Then
→˓you use the
returned topic key and do an update (PUT) of the topic with the uploaded file.

You cannot overwrite an existing topic with the same key. An error is returned if
→˓the topic already
exists

/

/**
Retrieves a ticket topic's metadata and content. Invoked via GET

<pre>Sample response:

{ "data":{
"topic":{

"parent":{
"num":"12","creator":"testUser","type":"analysis","createdTime":

→˓"1418131797522","open":"true"
},

"type":"analysis",
"name":"namesearch:result2",
"dataType":"hash"
},
"content":{"firstname":"bob","lastname":"johnson"},
"key":"ticket:12:analysis:namesearch:result2"

}
}</pre>

3.4. Creating an activity 25

DIMS Dashboard Documentation, Release 1.0.10

@method showTopic

@example

GET https://dashboard_url/api/ticket/topic/ticket:27:analysis:namesearch:result2

Using curl:

curl -k https://dashboard_url/api/ticket/topic/
→˓ticket:27:analysis:namesearch:result2

@param {string} id Ticket topic key in format ticket:<num>:<type>:<topic_name>
@return HTTP Status code and string reply.

/

/**
Updates a ticket topic. You can only update content.
@method updateTopic
@return HTTP Status code and string reply.
{"data":{

"topic":{
"parent":{

"num":"12","creator":"testUser","type":"analysis","createdTime":
→˓"1418131797522","open":"true"

},
"type":"analysis",
"name":"namesearch:result2",
"dataType":"hash"
},
"content":{"firstname":"john","lastname":"johnson"},
"key":"ticket:12:analysis:namesearch:result2"

}
}

@example

PUT https://dashboard_url/api/ticket/ticket:27/topic
body:
{

"content": <string content>
}

Note that content in this example could be JSON that is stringified. Content could
→˓also be content of a

file, base64'd, as in
PUT https://dashboard_URL/api/ticket/ticket:28/topic
body:
{

"content": <base64 content of a .png file>
}

Using curl with hash content (content is uri encoded):
curl --data "content=%7B%22firstname%22:%22john%22,%22lastname%22:%22johnson%22

→˓%7D" -k https://dashboard_url/api/ticket/ticket:12/topic

A successful response from the curl command might look like the following (line
→˓feeds added for clarity - reponse is just a string):

{"data":{
"topic":{

26 Chapter 3. Ticket API

DIMS Dashboard Documentation, Release 1.0.10

"parent":{"num":"12","creator":"testUser","type":"analysis","createdTime":
→˓"1418131797522","open":"true"},

"type":"analysis","name":"namesearch:result2","dataType":"hash"},
"content":{"firstname":"john","lastname":"johnson"},"key":

→˓"ticket:12:analysis:namesearch:result2"}}

@param {string} id Topic key in format ticket:<num>:<type>:<topic_name>
@param {string} content Content to be stored

/

3.4. Creating an activity 27

DIMS Dashboard Documentation, Release 1.0.10

28 Chapter 3. Ticket API

CHAPTER 4

Contact

Section author: Dave Dittrich (@davedittrich) <dittrich @ u.washington.edu>

29

DIMS Dashboard Documentation, Release 1.0.10

30 Chapter 4. Contact

CHAPTER 5

License

Copyright © 2014,2015 University of Washington. All rights reserved.

Berkeley Three Clause License
=============================

Copyright (c) 2014, 2015 University of Washington. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

31

	Using the Dashboard
	Mitigation Scenario
	System health
	Live log streaming
	Chat
	User display and trust groups

	Tickets
	General ticket structure
	Topics

	Ticket API
	HTTP Verbs
	Responses
	Retrieve a list of tickets
	No parameters
	With query parameters

	Creating an activity

	Contact
	License

